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Quantum scattering of icosahedron 
fullerene C60 with noble‑gas atoms
Jacek Kłos 1, Eite Tiesinga 2,3 & Svetlana Kotochigova 1*

There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas 
cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the 
molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We 
present quantum mechanical and semiclassical calculations of the elastic scattering differential cross 
sections and rate coefficients of the C60 fullerene with He and Ar noble-gas atoms in order to quantify 
the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional 
potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) 
with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by 
expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion 
coefficients have been computed from frequency dependent polarizabilities of C60 and the noble-gas 
atoms. We find that the potential of the fullerene with He is about five times shallower than that with 
Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering 
calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have 
computed differential cross sections at the collision energies used in experiments by Han et al. (Chem 
Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory 
agreement for C60 scattering with Ar.

The discovery of the fullerene, C60 molecule opened up new horizons in physical and chemical research1,2. It has 
a fascinating structure due to its highest-allowed point-group symmetry, the icosahedral symmetry. Pure 12C60 
represents a large stable molecule with no nuclear spin. These molecules can be easily formed in the gas phase3 
as well as into a crystal4.

The carbon atoms in C60 form a cage structure of 12 pentagons and 20 hexagons. In fact, there exists a large 
family of fullerenes with structural variations5,6 of their dome shape of 12 pentagons and an increasing number of 
hexagons. The nearly spherical fullerene molecules have high structural and chemical stability. For example, due 
to their large electron affinity, these molecules can form various derivative synthetic systems, such as hetero, endo-
hedral fullerenes that encapsulate a single ion, atom, or even small molecules such as H 2 O or HF7,8 or larger ones 
such as Sc3N9. Recently endohedral formaldehyde H 2CO@C60 has been synthesized 10 by molecular surgery 11. 
These encapsulated atoms or molecules maintain many of original properties and are isolated from the wider 
environment. Endohedral fullerenes have stimulated research in the field of fullerene-based nanotechnology12–16.

A second class of synthetic systems are exohedral fullerenes, where ligand atoms or molecules are attached 
to the outside of the fullerene shell17–19. These exohedral systems can posses strong interactions and bonding 
changing the nature of the ligands. The dominant reason for these changes is that the electron wavefunctions 
of the hybridized carbon atoms in fullerenes have a sp3 character with the spatial lobes of the p-wave electron 
orbitals more outside than inside the “sphere”16.

For the design of novel endohedral fullerenes a deep understanding of the targeted electronic structure as 
well as transport and optical properties is required. Exploiting the unique ability of fullerenes to stabilize internal 
metallic molecules is essential for the control and manipulation of their electronic and spin states 20. Currently, 
the primary goal of endohedral and exohedral fullerene studies is to put forward a fully quantitative, quantum 
description of these systems.

Gas phase fullerenes have also inspired experimental interests. Their ro-vibrational structure was elucidated in 
Refs.21,22. Recently, single quantum state preparation and control was achieved using high-resolution spectroscopy 
of the gas-phase C60 molecules23,24. These experiments showed an unusual spectrum of rotational transitions 
associated with the symmetry-induced restrictions on the fullerene motion. Finally, fullerene spectroscopy has 
also made a noticeable impact on astrophysicists studying the infrared emission from large carbon clusters in 
the intergalactic medium25,26. Additionally, the presence of the C +60 cation in diffuse interstellar clouds has been 
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confirmed in Ref.27 by a comparison to observed bands in photofragmentation of C +60 He in laboratory experi-
ments by Ref.28.

In this paper, we investigate theoretical aspects of efficient buffer-gas or sympathetic cooling of the transla-
tional motion of neutral fullerene molecules with noble-gas atoms as the buffer gas. Buffer gas cooling of alkali-
metal atoms and a “simple” diatomic molecule was first developed and demonstrated in 200529. We focus on 
elastic and thus momentum-changing collisions of C60 with 4 He and 40 Ar atoms temporarily creating 12C60-4 He 
and 12C60-40 Ar complexes. In these collisions the noble-gas atom accepts kinetic energy from the molecule and 
thus leaves a colder molecule behind.

We first perform quantum-chemical, electronic-structure simulations of 12C60-4 He and 12C60-40 Ar complexes 
using Density Functional Theory (DFT)30. Using the resulting anisotropic ground-state electronic potential 
energy surface, we then apply a numerical quantum-mechanical scattering solver to determine collisional prop-
erties of these molecular systems. Our results on the small inelastic rate coefficients have already been described 
in Ref.24. For these calculations, we assume that the temperature of C60 is well below that of room temperature 
following, for example, the 150 K experimental conditions in Ref.23. At these temperatures we can concentrate 
on the thermal population of the rotational states of the energetically-lowest “ v = 0 ” vibrational state of C60. We 
find that the collision cross section and rate coefficient are dominated by elastic scattering from the isotropic 
component of the interaction potentials. Relative strengths of isotropic and anisotropic components of the inter-
action potentials can be found in our recent publication24. Here, we compare the quantum results to those from 
a much simpler semi-classical scattering model, which assumes that the scattering between C60 and a noble-gas 
atom is dominated by isotropic long-range dispersion forces.

We also comment on the difference of our elastic rate coefficients for C60 and noble-gas atoms with those from 
a previous theoretical study31 based on pair-wise Lennard-Jones potentials. Finally, we compare our data with the 
experimental molecular-beam observations by Han et al.32 for C60-Ar. They measured apparent, detector-limited 
elastic cross sections at four high collision energies. The agreement between our theory and this experiment is 
satisfactory. We note that there exist few other studies on scattering processes involving the neutral fullerene mol-
ecule. We can mention molecular dynamics calculations at high collision energies between C60 and noble gases in 
Ref.33 as well as molecular dynamics simulations for C60 and nitrogen atoms (See Ref.34 and references therein).

Results and discussions
Potential energy surfaces of C60 and an Ar or He atom
For the relevant collision energies and in anticipation of the fact that bonding with noble-gas atoms tends to be 
weak, we assume throughout this paper that the carbon atoms in C60 are frozen at their equilibrium geometry 
and satisfy icosahedral symmetry. A weak van-der-Waals bond implies negligible displacements of carbon atoms 
even at the closest approach of the noble-gas atom. Convenient three-dimensional Cartesian and spherical coor-
dinate systems, x = (x, y, z) and x = (R, θ ,φ) , respectively, locating the noble-gas atom relative to the center of 
mass of this “frozen” C60 molecule are defined in Fig. 1. Electronic potential energy surfaces U(x) are then only 
functions of these coordinates.

Figure 2a and b show cuts through the electronic ground-state potential energy surface in spherical coordi-
nates at the equilibrium separation of Ar and He with respect to the center of mass of C60, respectively. For C60-Ar 
and C60-He, these radii correspond to Req = 7.2 Å and 7.0 Å, respectively, where 1 Å or 1 Angstrom is 10−10 
m. These equilibrium separations are about twice the average geometric radius of the fullerene. In addition, we 
show an isosurface, a surface of constant potential energy, for C60-Ar near its equilibrium separation in Cartesian 

Figure 1.   Cartesian x = (x, y, z) and spherical (R, θ ,φ) coordinate systems for the noble-gas atom (cyan sphere) 
near C60 used in our DFT simulations. The origin of the coordinate systems corresponds to the center of mass of 
the fullerene and R = |x| is the separation between the noble-gas atom and the center of mass of C60. The x and z 
axes coincide with a two-fold and five-fold symmetry axis of the fullerene, respectively. The figure also shows an 
isosurface (purple) of the electronic potential U(x) when a noble-gas atom goes “around” the fullerene at a fixed 
separation R close to the equilibrium separation.
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coordinates in Fig. 1. We have obtained these cuts and, in fact, the full three-dimensional potentials using com-
plete counterpoise corrected DFT calculations using the Gaussian-09 program35 (Any mention of commercial 
products is for information only; it does not imply recommendation or endorsement by the National Institute 
of Standards and Technology.) employing the hybrid wB97XD functional and 6-31G(d,p) basis set. Technical 
particulars about the DFT calculations are given in Supplemental Materials.

The isosurface in Fig. 1 has “dimples” corresponding to locations along which the noble-gas atom can 
approach the fullerene closer than for other geometries. In fact, the most pronounced dimples occur at the 
center of each hexagonal face of C60. Slightly weaker dimples occur at the center of each pentagonal face. The 
highly-symmetric form of the potential energy surfaces is better observed in Fig. 2a and b. The blue colored 
regions in both panels correspond to absolute or local minima of the potential. Local maxima occur in between 
the minima. The potential depth at the maxima relative to that at the dissociation limit is only 20–30% smaller 
than that at minima. Figure 2a and b also show that the potentials are shallow with depths ≈ hc × 300 cm−1 
for C60-Ar and ≈ hc × 60 cm−1 for C60-He. Here, h is the Planck constant and c is the speed of light in vacuum.

For the scattering calculations it is convenient to expand the potential energy surfaces in terms of a sum of 
Racah-normalized spherical harmonics Clm(θ ,φ) that fulfill the condition Clm(0, 0) = δm0 . In fact, we write

where Vl,m(R) are radial strengths or radial potentials and quantum numbers l, m are taken from the set L with 
l = 0, 6, 10, 12, 16, 18, 20, . . . and m = 5n with n = 0, 1, 2, . . . and m ≤ l for the icosahedral symmetry group. In 
practice, it is sufficient to expand U(x) with terms up to l = 20 and m = 20.

Figures 2c and d show the dominant isotropic V0,0(R) strength as functions of separation R for C60-Ar and 
C60-He, respectively. The nature of collisions is often controlled by the long-range, large R behavior of the interac-
tion potential. For our neutral systems, this behavior is due to the van-der-Waals dispersion potential, propor-
tional to 1/R6 . We have estimated the relevant isotropic l,m = 0, 0 as well as anisotropic l,m  = 0, 0 dispersion 
C6 coefficients for the C60-Ar and C60-He systems by calculating the dynamic dipole polarizability of C60 within 
DFT theory, using the imaginary-frequency dependent dipole polarizabilities of Ar and He of Derevianko et al.36, 
and then determined van-der-Waals C6 coefficients, using the Casimir-Polder formula37.

We find that the isotropic C6 coefficients are 2523Eha60 and 369.6Eha60 for C60-Ar and C60-He, respectively. 
The anisotropic dispersion coefficients are of the order of 10−4Eha

6
0 . Here, Eh is the Hartree energy and a0 is 

the Bohr radius. In 1995 Han et al.32 estimated a value for the isotropic C6 for C60-Ar of 2035Eha60 , about 25 % 
smaller than our result. A tiny anisotropic dispersion coefficient, seven orders of magnitude smaller than the 
isotropic one, might suggest that rotational quenching of C60 in collisions with Ar or He has a small probability. 
As the atom and molecule approach each other, however, other non-dispersive anisotropies appear, leading for 
example to the ≈ 30% differences between the (local) minima and maxima near the equilibrium separations of 
≈ 7 Å and which can induce rotational transitions. This corrugation of the potential energy surface is separa-
tion dependent. For example at a separation of R ≈ 10.5 Å the energy difference between minima and maxima 
is only ≈ 1 % for both systems. This implies a rapid decrease in the anisotropy and for moderate separations the 

(1)U(x) =
∑

l,m∈L

Vl,m(R)
Clm(θ ,φ)+ Cl−m(θ ,φ)

2
,

Figure 2.   Potential energy surfaces for C60-Ar and C60-He. Panels (a) and (b) show contour plots of the 
potentials as functions of angles θ and φ for C60-Ar and C60-He, respectively. The separations between Ar and 
C60 and between He and C60 are their equilibrium bond lengths. A small white regular pentagon or hexagon is 
placed at each (local) minimum of the potential. They indicate that the minimum occurs when the noble-gas 
atom is placed above the center of one of these figures. Notice the very different energy scales of the two panels. 
The zero of energy occurs where the noble-gas atom is infinitely far away from the fullerene. Panels (c) and 
(d) show radial strengths V0,0(R) as functions of R for C60-Ar and C60-He, respectively. This isotropic strength 
dominates in the atom-fullerene bond. Here, a0 = 0.05291 . . . nm is the Bohr radius.
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Ar or He atoms “view” the fullerene as an isotropic ball. However, determinations of quenching rate coefficients 
fall outside the scope of this work.

Quantum and semi‑classical scattering calculations
In scattering models the noble-gas collision partner “sees” the whole fullerene cage and undergoes elastic col-
lisions. To estimate elastic rate coefficients we resort to two approaches. The first approach is the widely used 
semiclassical approximation for isotropic elastic scattering38, which leads to the total elastic rate coefficient

at relative collision energy E = µv2/2 with relative velocity v. Here, σSC(E) is the total semi-classical elastic cross 
section, dimensionless κ = 6.13 · · · , µ is the reduced mass, � is the reduced Planck constant, E6 = �

2/(2µβ2
6 ) is 

the van-der-Waals energy, and β6 = (2µC6/�
2)1/4 is the van-der-Waals length. Equation (2) only depends on the 

isotropic van-der-Waals dispersion coefficient and is valid when E ≫ E6 . For concreteness we note that system 
parameters (µ,E6,β6) are (37.860974 u, kB × 0.1226 mK, 136.6a0 ) and (3.980475 u, kB × 9.396 mK, 48.12a0 ) for 
12C60-40 Ar and 12C60-4He, respectively. Here, u is the unified atomic mass unit and kB is the Boltzmann constant.

Our second approach is a quantum scattering calculation using only the isotropic radial potential V0,0(R) . 
Then, we only need to numerically solve a single radial Schrödinger equation for each (end-over-end) partial 
wave ℓ = 0, 1, 2, . . . . That is, we find radial scattering wavefunctions φℓ(R) satisfying

where the relative wavevector k =
√

2µE/�2 . For each partial wave ℓ and collision energy E, the differential 
equation in Eq. (3) is propagated from R = 8.0a0 up to R = 100a0 using the log-derivative method39 implemented 
within Matlab (Any mention of commercial products is for information only; it does not imply recommendation 
or endorsement by the National Institute of Standards and Technology.)40 with 100 000 equally spaced steps. The 
radial wavefunctions near 100a0 are used to construct the dimensionless scattering phase shift δℓ(E) . Following 
Ref.38, we define the polar scattering angle θCM of the collision in the center-of-mass (CM) frame and construct 
the differential cross section dσ/d� = |f (E, θCM)|2 with dimension of length squared. Here, the scattering ampli-
tude f (E, θCM) is described in terms of a sum over ℓ with summants that are functions of δℓ(E) and θCM . For 
scattering from an isotropic potential the scattering amplitude is independent of the azimuthal scattering angle 
in the CM frame. The optical theorem then tells us that the total elastic cross section σ(E) = 4πImf (E, 0)/k and 
the total elastic rate coefficient K(E) = vσ(E).

Partial waves ℓ up to 80 for collision energies E up to hc × 2 cm−1 , up to 280 for E up to hc × 10 cm−1 , and 
up to 2600 for E up to hc × 2000 cm−1 are required to converge differential-, integral cross sections, and rate 
coefficients for C60-Ar to within 1 %. To converge the C60-He cross sections the largest partial waves ℓ reach 520 
at the highest collision energies. Thermally averaged quantum rate coefficients are obtained by averaging K(E) 
with a three-dimensional Maxwell-Boltzmann velocity distribution at temperature T for both fullerenes and 
noble-gas atoms.

Predictions for elastic cross sections and rate coefficients
We show total elastic cross sections as functions of collision energy and thermalized rate coefficients as func-
tions of temperature in Fig. 3a–c, respectively. For both C60-Ar and C60-He the quantum elastic cross sections in 
panel (a) of Fig. 3 are characterized by so-called glory oscillations38 in addition to narrow shape resonances due 
to quasi-bound states localized behind centrifugal barriers. The C60-He cross sections have glory oscillations 
with longer energy-wavelengths and larger fractional amplitudes than those for the C60-Ar system. The C60-He 
system also has fewer shape resonances. All these differences are consequences of the smaller reduced mass and 
the smaller depth of the isotropic strength V0,0(R) of the C60-He system. The semiclassical model of the cross 
section does not account for glory oscillations or shape resonances. It does have a E−1/5 power-law dependence 
with respect to energy that qualitatively agrees with the quantum results. In fact, when we average the quantum 
cross section over a period of the glory oscillations, not shown in Fig. 3a, we obtain averaged cross sections as 
functions of energy that are ≈ 25% larger than those from the semi-classical model.

Our thermalized elastic rate coefficient from quantum scattering and semi-classical calculations up to 200 K 
are shown in Fig. 3b and c. The semi-classical thermalized rate coefficient is found by performing the integra-
tion over E analytically. The quantum thermalized rate coefficient is determined numerically. For both systems, 
the glory oscillations and shape resonances have “washed out” in the averaging over the Maxwell-Boltzmann 
distribution. At a temperature of T = 150 K the quantum value is around 6× 10−9 cm3s−1 for both complexes. 
The semiclassical model then gives a thermalized rate coefficient of 5× 10−9 cm3s−1 and 4× 10−9 cm3s−1 for the 
C60-Ar and C60-He collisions, respectively. The larger discrepancy for C60-He between the quantum calculation 
and the semi-classical model can be associated with the fact that a smaller number of partial waves are needed 
to converge the cross sections than for the C60-Ar complex at the same collision energy or temperature. Hence, 
the collision of a fullerene with He is “less” classical.

Thermalization times can be estimated under the assumption that the number density of the noble-gas atoms, 
here nHe or nAr , is many orders of magnitude larger that those for the fullerenes. Then the mean time between 
collisions for a single C60 molecule with noble-gas atoms at temperature T is 1/(K(T)nHe) or 1/(K(T)nAr) . Taking 
into account that the C60 molecule needs to collide only a few times before the system equilibrates and using the 

(2)KSC(E) = vσSC(E) = κ

(

E

E6

)3/10
�β6

µ

(3)
d2φℓ(R)

dR2
+

(

k2 −
2µ

�2
V0,0(R)−

ℓ(ℓ+ 1)

R2

)

φℓ(R) = 0 ,
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ideal gas law, rate coefficients of a few times 10−9 cm3s−1 imply timescales of order of milliseconds at noble-gas 
gas pressures of order 10−5 Torr32. In SI units, 1 Torr is approximately 133.3 Pa.

Ruiz et al., in Ref.31 constructed potential energy surfaces for C60-He and C60-Ar based on the sum of sixty 
pair-wise Lennard-Jones potentials for C-He and C-Ar with the carbon atoms at their equilibrium position 
in C60. We expanded this potential energy surface in spherical harmonic functions and computed total elastic 
cross sections and thermalized rate coefficients from quantum scattering simulations using only the isotropic 
strength or potential V0,0(R) . The results are also shown in Fig. 3. We observe that our predictions of cross sec-
tions and rate coefficients are smaller that those derived from data by Ruiz et al., except for temperatures below 
2 K in Fig. 3c. Moreover, the glory oscillations for the two simulations in Fig. 3a are out of phase and the shape 
resonances occur at different collision energies.

Comparison with a measurement in the literature
We can compare estimates of the collision-energy-dependent differential cross sections for C60-Ar to data 
obtained in supersonic-beam experiments by Han et al. 32. In these experiments a narrow beam of high-velocity 
12C60 passes through a 300 K, ∼ 10−5 Torr pressure sample of 40Ar. Then C60-Ar collisions can remove C60 mol-
ecules from the beam and the number of remaining C60 molecules in the beam as function of Argon pressure 
is detected downstream. Han et al., kept the Ar pressure is sufficiently low that a fullerene collides at most once 
with the noble-gas atoms over the sample length and also realized that the Ar atoms can be considered at rest 
for the relevant C60 velocities. That is, the corresponding kinetic energies of C60 in their beam are much larger 
than those shown in Fig. 3a.

Figure 4a shows our differential cross section dσ/d� as functions of polar angle θCM in the center-of-mass 
coordinate frame at four collision energies. These four collision energies correspond to the four relative veloci-
ties of 1400 m s−1, 2000 m s−1, 2100 m s−1, and 2400 m s−1 used by Han et al.32. To converge our differential cross 
sections phase shifts for partial waves from ℓ = 0 up to 3200 for the highest collision energy have been used. As 
one can see in Fig. 4a with its logarithmic scale along the vertical axis, the differential cross sections are largest 
for small θCM of order a few degrees and have rapid oscillations for θCM up to 20◦.

A complicating factor in the beam experiments by Han et al.32 is that small angle deflections of the heavy C60 
do not lead to detectable loss of fullerenes from the supersonic beam. Han et al., account for this limitation by 
introducing a dimensionless device-dependent angular resolution function η(θCM) with values between 0 and 
1 as function of θCM . We show this function in Fig. 4b. Here, η(θCM) = 0 implies that 100% of the loss of C60 
from the beam due to scattering into angle θCM is detected. A value of 1 implies that none of the loss is detected. 
Clearly, for the apparatus of Han et al., no signal is detected for θCM < 10◦ even though the differential cross 
section is largest for these angles.

We derived η(θCM) from digitizing the data in Fig. 3 of Ref.32 and using the definition of the reduced deflec-
tion in its caption. In fact, we use a distance of 12.5 cm between the (mean) scattering location of a C60 molecule 
and the detector, assume a detector aperture diameter of 0.347 cm, and realize that polar scattering angle � of 
a scattered C60 molecule relative to the beam direction in the laboratory frame and θCM in the center-of-mass 
frame are related by41

(4)tan� =
sin θCM

cos θCM + 1/ξ
.

Figure 3.   Elastic cross sections σ as functions of relative collision energy E (panel a) and thermalized elastic 
rate coefficients K as functions of temperature T (panels b and c) for 12C60+4 He and 12C60+40Ar based on 
quantum scattering simulations using our isotropic V0,0(R) strength (black solid lines) and semiclassical 
simulations using the corresponding isotropic van-der-Waals coefficients (purple dashed lines). The solid green 
lines represent our quantum simulations based on the isotropic potential derived from data in Ref.31. Line colors 
and styles are the same in all three panels. In panel (b) quantum-based rate coefficients for 12C60+4 He and 12
C60+40Ar are nearly indistinguishable on the scale of the figure and not further identified. In panels (b) and (c) 
the semiclassical predictions for He are noticeably smaller than those for Ar.
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Here, ξ = mAr/mC60 ≪ 1 is the ratio of the masses of 40 Ar and 12C60. For ξ < 1 , by inspection � ∈ [0, arcsin ξ ] 
so that in the laboratory frame the angular deflections of the heavy fullerene are small. Moreover, θCM ∈ [0, θmax] 
with θmax slightly larger than π/2 and found from cos θmax = −ξ . (The detector aperture diameter was not speci-
fied in Ref.32. We assumed that the largest reduced deflection in Fig. 3 of Ref.32 corresponds to the largest allowed 
value for � . A derived diameter of 0.347 cm is not unreasonable for beam detectors.)

We then simulate the experiment signal of Ref.32 by constructing the apparent cross section

Products {1− η(θCM)} dσ/d� as function of θCM are shown in Fig. 4c for the four relevant relative velocities or 
collision energies. As expected from the behavior of η(θCM) , the experimental apparatus does not count collision 
events below 10◦ . Moreover, the rapid angular oscillations in dσ/d� are only relevant for the smallest collision 
energy of hc × 3102 cm−1 , while the products for the three larger collision energies are identical on the scale 
of the figure. It is worth noting that large-angle scattering processes are governed by small-impact parameter 
collisions of noble-gas atoms from the repulsive wall of the potential.

In Table 1 we list values for the semi-classical elastic cross section σSC(E) , the elastic cross section σ(E) based 
on quantum scattering calculations, and the apparent cross section σapp(E) computed from our differential 
cross sections and the angular resolution function of the apparatus of Ref.32 at four large collision energies. Our 
standard uncertainty for σapp(E) is due to the uncertainty in obtaining the resolution function. We first note that 
σapp(E) ≪ σ(E), σSC(E) as expected from the data in Fig. 4.

Next we compare the theoretical apparent cross sections to the corresponding experimental data of Ref.32. 
The apparent cross sections from the experiment are larger than our computed values although the agreement 
improves for the largest collision energies. Both observations might be consistent with an underestimate of 
the uncertainty deriving the resolution function and specifically our estimate of the diameter of the detector 
aperture, but also with the absence of inelastic processes from transitions between ro-vibrational states of C60 

(5)σapp(E) = 2π

∫ θmax
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Figure 4.   Elastic differential cross sections dσ/d� (panel a) and {1− η(θCM)}dσ/d� (panel c) for 12C60-40 Ar 
as functions of polar scattering angle θCM at four collision energies. The data for dσ/d� are based on quantum 
scattering calculations using the isotropic V0,0(R) potential strength. The four collision energies in the two 
panels correspond to the relative collision velocities of 1400 m/s, 2000 m/s, 2100 m/s, and 2400 m/s used in 
the supersonic-beam experiments performed by Han et al. 32. Panel (b) shows the angular resolution function 
η(θCM) of the experimental apparatus and are used in our simulations of apparent cross sections of 12C60-40 Ar 
collisions. Thus, panel (textbfc) accounts or corrects for the missing forward and small θCM scattering that is 
undetectable in the experiments by Han et al. 32.

Table 1.   Elastic cross sections and apparent cross sections as defined in the text at four collision energies for 
12C60-40 Ar collisions in units of Å 2 obtained from the semiclassical (SC) formula in Eq. (2), our quantum-
mechanical (QM) scattering calculations, and experimental (EXP) results of Han et al.32. Numbers in 
parenthesis represent standard uncertainties in the data. The uncertainties in our computed σapp represent the 
5 % standard uncertainty in the angular resolution function η(θCM).

Method

E/hc (cm−1 ) → 3102 6330 6979 9115

Observable ↓

SC σSC 984 853 837 793

QM σ 1160 1061 1019 953

QM σapp 69 (3) 62 (3) 62 (3) 60 (3)

EXP σapp 111 (3) 94 (2) 85 (3) 70 (4)
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induced by collisions with Ar in the theoretical simulations. These transitions are due to potential strengths 
Vl,m(R) with l,m  = 0, 0 . For the higher collision energies inelastic loss will be smaller. An underestimate of the 
uncertainty of the aperture diameter is more likely. Finally, the effects associated with the thermal distributions 
of velocities of both C60 and Ar are reported to be small, amounting to an uncertainty of 2 % in the measured 
apparent cross sections.

Conclusion
We have performed quantum scattering calculations to describe elastic collisions between the rigid 12C60 fullerene 
and 4 He and 40 Ar noble-gas atoms. Such collisions are of interest in buffer gas cooling of fullerenes. In order to 
perform the quantum scattering calculations we determined the potential energy surfaces by density functional 
theory connected to the long-range dispersion potential based on van der Waals C6 dispersion coefficients 
computed from frequency-dependent dynamic polarizabilities of the colliding particles. We realized that the 
anisotropic components of these potentials are small and can be omitted in the calculation of scattering observa-
bles. We determined differential cross sections, total elastic cross sections, and rate coefficients for both systems 
and compared those to values obtained from a semiclassical formula that only depends the reduced mass of the 
system and the C6 dispersion coefficient. The semiclassical data underestimates thermalized rate coefficients by 
about 20%. The size of the rate coefficients is sufficiently large that buffer gas cooling will be efficient.

For C60 collisions with Ar we could compare total elastic cross sections computed from integrating the dif-
ferential cross sections with the window apparatus functions to the experimental results at four collision energies 
performed in 1995 by Ke-Li Han et al.32 and we found fairly good agreement.

Data availibility
Correspondence and requests for materials should be addressed to S.K.
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